
Catching Falling Dominoes:
Cloud Management-Level Provenance
Analysis with Application to OpenStack

Azadeh Tabiban1, Yosr Jarraya2, Mengyuan Zhang2,

Makan Pourzandi2, Lingyu Wang1 and Mourad Debbabi1

1 Concordia University, Canada, 2 Ericsson Security Research, Canada

CNS 2020

1

Outline

• Cloud Security Challenge

• Limitation of Exiting Solutions

• Cloud Provenance Model

• Methodology

• Implementation

• Experiment Results

• Conclusion

2

Cloud Virtual Infrastructure

• Cloud computing has been

widely adopted to provide

users the ability to self-

provision resources while

optimally sharing the

underlying physical

infrastructure

3

Subnet1 Subnet2

PortB

IF1 IF2

VM_A VM_B

TenantA Network TenantB Network

Management API Interface

C
lo

u
d

 V
ir

tu
al

 In
fr

as
tr

uc
tu

re

Tenants

Subnetz

PortA

Subnety

IFy

VM_y

Porty

External Network

Security
Groupy

Subnet1 Subnet2

PortB

IF1 IF2

VM_A VM_B

TenantA Network TenantB Network

Management API Interface

C
lo

u
d

 V
ir

tu
al

 In
fr

as
tr

uc
tu

re

Tenants

Subnetz

IFz

PortA

Subnety

IFy

VM_y

Porty

External Network

Security
Groupy

Attach Subnet
to Router

Subnets
addresses

Routing table

Cloud Virtual Infrastructure

4

• Cloud computing has been

widely adopted to provide

users the ability to self-

provision resources while

optimally sharing the

underlying physical

infrastructure

Subnet1 Subnet2

PortB

IF1 IF2

VM_A VM_B

TenantA Network TenantB Network

Management API Interface

C
lo

u
d

 V
ir

tu
al

 In
fr

as
tr

uc
tu

re

Tenants

Subnetz

IFz

VM_z1

PortA

Subnety

IFy

VM_y

Porty

External Network

Portz1Security
Groupy

Attach Subnet
to Router

Subnets
addresses

Routing table

Portz1

VM
IP address

CreateVM

Cloud Virtual Infrastructure

5

• Cloud computing has been

widely adopted to provide

users the ability to self-

provision resources while

optimally sharing the

underlying physical

infrastructure

Cloud Virtual Infrastructure

• The self-service and multi-tenancy nature of clouds also

leads to a higher complexity and greater chances of

misconfigurations

• Adversarial actors can launch their attack by exploiting

cloud misconfigurations

• This makes explaining systems behaviour difficult → The

way to find the root cause

6

Cloud Virtual Infrastructure

• The self-service and multi-tenancy nature of clouds also

leads to a higher complexity and greater chances of

misconfigurations

• Adversarial actors can launch their attack by exploiting

cloud misconfigurations

• This makes explaining systems behaviour difficult → The

way to find the root cause

7

The Need for Root Cause Analysis

• The need for finding the root cause:

▪Forensic analysis

▪Debugging

▪Prevention of recurrent failures

▪Recovery

8

Outline

• Cloud Security Challenge

• Limitation of Exiting Solutions

• Cloud Provenance Model

• Methodology

• Implementation

• Experiment Results

• Conclusion

9

Limitation of Existing Solutions

• Problem localization solutions

▪E.g., using alert correlation [1]

▪Not providing root cause operations

• Cloud logs investigation

▪No intrinsic central view of changes in different services

▪ Log aggregation cannot explain the interdependencies

between events

▪ Logs are not sufficiently expressive

10

Limitation of Existing Solutions

• Existing provenance solutions

▪On Low-level system calls [2, 3]

and not sufficient for clouds

oBig size of generated records

oTedious and error-prone analyses

oStorage and network overhead

▪ Impractical interception

mechanisms in clouds

oRequiring system instrumentation
11

Process A

File 0

Process B Process D

File 1 File 2

Process C

File X

3

0

1

8

2

7

5

6

4

Example Attack Scenario

• A data leakage alert is

released

• Based on the logs, the

cloud admin cannot

explain the complex

chain of events leading to

the attack

▪ Interdependency

▪Expressiveness

IF2 Subnet2

PortA

Subnet1

PortB

Leakage to
VM_A VM_Mal

VM_B

Router1

PortMal

IF1

2019-05-18 19:42 INFO

neutron.wsgi "POST /
v1.0/servers" 201Nova

Neutron

2019-05-18 19:30 INFO

neutron.wsgi "PUT /v1.0/

routers/add-router-interface"

Neutron

2019-05-18 19:24 INFO

neutron.wsgi "POST /
v1.0/routers"

Neutron

2019-05-18 19:50 INFO

neutron.wsgi "POST /
v1.0/ports"

Neutron

2019-05-18 20:00 INFO

neutron.wsgi "PUT /
v1.0/ports/p123"

2019-05-18 19:51 INFO

neutron.wsgi "POST /
v1.0/servers" 201Nova

12

• What if we could find the interdependencies?

Example Attack Scenario

Neutron

2019-05-18 19:24 INFO
neutron.wsgi [req-0607d

ddacd bf6f8] "POST /
v1.0/routers"

Neutron

2019-05-18 19:30 INFO
neutron.wsgi [req-0607d ddacd

bf6f8] "PUT /v1.0/routers/

add-router-interface"

2019-05-18 19:42 INFO
neutron.wsgi [req-9073k

ddacd bf6f8] "POST /
v1.0/servers" 201

Nova

Neutron

2019-05-18 19:50 INFO
neutron.wsgi [req-0607d

ddacd bf6f8] "POST /
v1.0/ports"

2019-05-18 19:51 INFO
neutron.wsgi [req-9073k

ddacd bf6f8] "POST /
v1.0/servers" 201

Nova

Neutron

2019-05-18 20:00 INFO
neutron.wsgi [req-0607d

ddacd bf6f8] "PUT /
v1.0/ports/p123"

Router1

1: Create Router1

2: Attach Subnet1
to Router1

Subnet1

IF1

3: Create VM_A
in Subnet1

4: Create PortMal
on Router1

PortMal

PortA

Subnet1

5: Create VM_Mal
attached to PortMal

PortMal

6: Update PortMal
device-owner

PortMal

13

DOMINOCATCHER

• The first provenance model at cloud management level

• A mechanism to capture the provenance metadata from

different services in clouds and construct the provenance

graph

▪A less invasive interception mechanism

▪ Incremental construction

• Provenance-based forensic approach

▪User preference-based pruning

• Implementation based on OpenStack
14

Outline

• Cloud Security Challenge

• Limitation of Exiting Solutions

• Cloud Provenance Model

• Methodology

• Implementation

• Experiment Results

• Conclusion

15

Cloud Management Provenance Model

• Defined based on a standard
provenance specification [4]
where:

▪Nodes:

▪Entities: virtual resources

▪Activities: cloud management
operations

▪Agents: cloud tenants or
users Router1

Version: 1

Router1
Version: 0

PortMal
Version: 0

Create
Port

TenantB

16

Cloud Management Provenance Model

• Defined based on a standard
provenance specification [4]
where:

▪Edges: The provenance
edges encode the
dependencies between
nodes. E.g.,

oUsed, WasGeneratedBy
(both pointing to the past in
time)

Router1
Version: 1

Router1
Version: 0

PortMal
Version: 0

Create
Port

TenantB

WasAssociatedWithUsed

WasGeneratedBy

WasGeneratedBy

17

VM_Mal
Version: 0

Create
VM

PortMal
Version: 2

Update Port
device_owner

Create
Port

Update Port
device_owner

PortMal
Version: 1

PortMal
Version: 0

TenantB

Router1
Version: 1

Attach
Subnet to

Router

Router1
Version: 0

Create
Router

TenantA

Subnet1
Version: 2

Create
Port

PortA
Version: 0

Create
VM

VM_A
Version: 0

WasGeneratedBy
Used

WasGeneratedBy

Used

WasGeneratedBy

Used

WasGeneratedBy

WasAssociatedWith

Used

WasGeneratedBy

Used

WasGeneratedBy

WasGeneratedBy

WasAssociatedWith

Used

WasGeneratedBy

Used

WasGeneratedBy

PortMal
Version: 3

WasGeneratedBy

Update Port
device_owner

PortMal
Version: 4

Used

WasGeneratedBy

Cloud Management Provenance Model

• VMA’s network is attached to TenantA’s router

• A TenantB’s user created a port on that router
▪So, that user could enter TenantA’s network

• The port was updated once a new VM was attached to it
▪So, that user could disable anti-spoofing rules to launch the

attack

18

Outline

• Cloud Security Challenge

• Limitation of Exiting Solutions

• Cloud Provenance Model

• Methodology

• Implementation

• Experiment Results

• Conclusion

19

DOMINOCATCHER Methodology

Request
Interception

Offline
Forensics Analysis

Runtime
Provenance Construction

Provenance
Database

Threat
Detection

Cloud
Management

Management API
Req./Res.

Threat
Properties

Query

20

Provenance Construction

DOMINOCATCHER

Cloud

Neutron

Nova

Glance

Runtime Provenance Construction Module

Requests Processor

Updated/Created
Resources

API Requests/
Responses
Interceptor

Requested
Operation Type

21

Provenance Construction – Data
Collection

DOMINOCATCHER

Cloud

Neutron

Nova

Glance

Runtime Provenance Construction Module

Requests Processor

Updated/Created
Resources

API Requests/
Responses
Interceptor

Requested
Operation Type

Cloud Management Requests

E.g., Create port

in subnet SN123

22

Provenance Construction – Data
Collection

DOMINOCATCHER

Cloud

Neutron

Nova

Glance

Runtime Provenance Construction Module

Requests Processor

Updated/Created
Resources

API Requests/
Responses
Interceptor

Requested
Operation Type

Cloud Management Requests

API Req./Res.

“POST /v2.0/ports .." …

Req. body: “… subnet_id: SN123 …”

Res. Body: “… id: P123 …”

23

Provenance Construction – Data
Collection

DOMINOCATCHER

Cloud

Neutron

Nova

Glance

Runtime Provenance Construction Module

Requests Processor

Updated/Created
Resources

API Requests/
Responses
Interceptor

Requested
Operation Type

Cloud Management Requests

API Req./Res.

Event name: “Create Port”

Updated/ Created resources:

• Subnet: SN123

• Port: P123
24

Provenance Construction – Graph
Generation

DOMINOCATCHER

Cloud

Neutron

Nova

Glance

Runtime Provenance Construction Module

Requests Processor

Updated/Created
Resources

API Requests/
Responses
Interceptor

Requested
Operation Type

Cloud Management Requests

API Req./Res.

Provenance
Graph
Builder

Port
P123

Version:0

Subnet
SN123

Version:1

Create Port

WasGeneratedByWasGeneratedBy

Used

Subnet
SN123

Version:0

25

Provenance Construction – Graph
Generation

DOMINOCATCHER

Cloud

Neutron

Nova

Glance

Runtime Provenance Construction Module

Requests Processor

Updated/Created
Resources

API Requests/
Responses
Interceptor

Requested
Operation Type

Cloud Management Requests

API Req./Res.

Provenance
Graph
Builder

Graph
Database

(e.g., Neo4j)

26

Forensic Analysis

DOMINOCATCHER

Cloud

Neutron

Nova

Glance

Runtime Provenance Construction Module

Requests Processor

Updated/Created
Resources

API Requests/
Responses
Interceptor

Requested
Operation Type

Cloud Management Requests

API Req./Res.

Provenance
Graph
Builder

Graph
Database

(e.g., Neo4j)

Threat
Detection

Tool
(e.g.,

Snort) Triggers with threat parameters

Offline Forensic
Analysis Module

27

C r e a te

P o r t

T e n a n tB

R o u te r 1

V e r s io n : 0

C r e a te

R o u te r

T e n a n tA

S u b n e t1

V e r s io n : 2

W a s G e n e ra te d B y

W a sA sso c ia te d W ith

U s e d

W a s G e n e ra te d B y

W a s G e n e ra te d B y

W a s A s s o cia te d W ith

U s e d

R o u te r 1

V e r s io n : 1

W a s G e n e ra te d B y

A tta c h

S u b n e t to

R o u te r

U s e d

C r e a te

P o r t

P o r tA

V e r s io n : 0

C r e a te

V M

V M _ A

V e r s io n : 0
W a s G e n e ra te d B y

U s e d

W a s G e n e ra te d B y

P o r tA

V e r s io n : 1

W a s G e n e ra te d B y

S u b n e t1

V e rs io n : 3

W as G e n e rate d B y

U s e d

V M _ M a l

V e r s io n : 0

C r e a te

V M

P o r tM a l

V e r s io n : 0

W a s G e n e ra te d B yU s e d

W a s G e n e ra te d B y

P o r tM a l

V e r s io n : 1

W a s G e n e ra te d B y

U p d a te P o r t

d e v ic e _ o w n e r

P o r tM a l

V e r s io n : 2

U s e d

W a s G e n e ra te d B y

Forensic Analysis – Challenges

▪Large size of the

provenance graph

▪Different tenants’

analysis requirements

Forensic analysis

only on this tenant

users’ behaviour

Forensic analysis on all

tenants with whom there

was a traffic exchange 28

Forensic Analysis – Pruning Schemes

1. Disjoint subgraph

2. Context-based

29

Forensic Analysis – Pruning Schemes

1. Disjoint subgraph

• Discards the subgraphs to which there is no path from the

target resource node

30

Forensic Analysis – Pruning Schemes

1. Disjoint subgraph

VMA
Version:0

Create VM
(IDz)

Used

WasGeneratedBy

WasGeneratedBy

Attach
Subnet to

Router (IDx)

Used

Used

SubnetA
Version:0

SubnetA
Version:1

Router1
Version:0

Router1
Version:1

WasGeneratedBy

Create VM
(IDw)

Used

WasGeneratedBy

SubnetB
Version:0

SubnetB
Version:1

Attach
Subnet to

Router (IDy)

Used

Router1
Version:2 SubnetB

Version:2
WasGeneratedBy

WasGeneratedBy

Used

VMB
Version:0

WasGeneratedBy

SubnetA
Version:2

WasGeneratedBy

Add Subnet
Interface to
Router(IDm)

Used Used

SubnetC
Version:4

Router2
Version:0

Router2
Version:1

WasGeneratedBy

SubnetC
Version:5

WasGeneratedBy

Add to Security
Group (IDt) Used

SecurityGroupA
Version:1

Used

VMA
Version:1SecurityGroupA

Version:2

WasGeneratedBy
WasGeneratedBy

Add to Security
Group (IDk)

Used

VMX
Version:1

Used

VMX
Version:2

SecurityGroupA
Version:3

WasGeneratedBy

WasGeneratedBy

Create VM
(IDp)

SubnetX
Version:1

Used

WasGeneratedBy

31

Forensic Analysis – Pruning Schemes

2. Context-base

• Traverses paths while checking the specified constraints

to identify a subgraph of resources and operations

interdependent with the victim virtual resource

32

Forensic Analysis – Pruning Schemes

2. Context-base

VMA
Version:0

Create VM
(IDz)

Used

WasGeneratedBy

WasGeneratedBy

Attach
Subnet to

Router (IDx)

Used

Used

SubnetA
Version:0

SubnetA
Version:1

Router1
Version:0

Router1
Version:1

WasGeneratedBy

Create VM
(IDw)

Used

WasGeneratedBy

SubnetB
Version:0

SubnetB
Version:1

Attach
Subnet to

Router (IDy)

Used

Router1
Version:2 SubnetB

Version:2
WasGeneratedBy

WasGeneratedBy

Used

VMB
Version:0

WasGeneratedBy

SubnetA
Version:2

WasGeneratedBy

Add Subnet
Interface to
Router(IDm)

Used Used

SubnetC
Version:4

Router2
Version:0

Router2
Version:1

WasGeneratedBy

SubnetC
Version:5

WasGeneratedBy

Add to Security
Group (IDt) Used

SecurityGroupA
Version:1

Used

VMA
Version:1SecurityGroupA

Version:2

WasGeneratedBy
WasGeneratedBy

Add to Security
Group (IDk)

Used

VMX
Version:1

Used

VMX
Version:2

SecurityGroupA
Version:3

WasGeneratedBy

WasGeneratedBy

Create VM
(IDp)

SubnetX
Version:1

Used

WasGeneratedBy

[Create-VM,

Attach-Subnet-to-Router]

33

Forensic Analysis

DOMINOCATCHER

Cloud

Neutron

Nova

Glance

Runtime Provenance Construction Module

Requests Processor

Updated/Created
Resources

API Requests/
Responses
Interceptor

Requested
Operation Type

Cloud Management Requests

API Req./Res.

Provenance
Graph
Builder

Offline Forensic
Analysis Module

Resource
Ownership

Network
Connectivity

Resource
 Security Levels

Pruned
Graph

Host
Co-Residency

Graph
Database

(e.g., Neo4j)

Threat
Detection

Tool
(e.g.,

Snort) Triggers with threat parameters

34

Outline

• Cloud Security Challenge

• Limitation of Exiting Solutions

• Cloud Provenance Model

• Methodology

• Implementation

• Experiment Results

• Conclusion

35

Implementation

• Implemented on OpenStack (Rocky)

• Neo4j as the graph database and Cypher language to

query

• Deployed as WSGI middlewares on OpenStack services

▪Configuration changes are performed by these services →

Capturing all configuration changes through API calls

▪As an attached interface requires less customization →

Less invasiveness

• Py2neo library to translate python queries into Cypher

36

Outline

• Cloud Security Challenge

• Limitation of Exiting Solutions

• Cloud Provenance Model

• Methodology

• Implementation

• Experiment Results

• Conclusion

37

Experiment Results

• Measured the ratio between the added latency and

OpenStack management operations execution time in

various cloud sizes

▪Total overhead remains under %4.17

Cloud Size # of Provenance

Graph Nodes

Data

Collection

Graph

Generation

Total Overhead

600 VMs 43069 %.21 %1.89 %2.10

1800 VMs 64689 %.23 %3.32 %3.56

3000 VMs 107936 %.23 %3.94 %4.17

38

Experiment Results

• Measured the ratio between the added latency and

OpenStack management operations execution time in

various cloud sizes

▪Total overhead remains under %4.17

39

Experiment Results

• For a provenance graph constructed with 120,000

operations, only 80-megabyte storage is required

▪Higher than the number of configuration API calls issued

in one day in a real enterprise cloud

40

Outline

• Cloud Security Challenge

• Limitation of Exiting Solutions

• Cloud Provenance Model

• Methodology

• Implementation

• Experiment Results

• Conclusion

41

Concluding Remarks

• Defined a provenance model on cloud management level

• Provided an interception mechanism deployed in different

cloud services

▪Less invasiveness

• Proposed a provenance-based forensic analysis

approach for clouds

• Implemented and evaluated in OpenStack

42

References

1. Vitrage (rca (root cause analysis) service).

https://governance.openstack.org/tc/reference/projects/vitrage.html

2. KING, S. T., AND CHEN, P. M. Backtracking intrusions. (SOSP’03)

3. HASSAN, W. U., AGUSE, L., AGUSE, N., BATES, A., AND

MOYER, T. Towards scalable cluster auditing through grammatical

inference over provenance graphs. (NDSS’18)

4. Prov-dm: The prov data model. W3C Recommendation.

http://www. w3. org/TR/prov-dm (2013)

43

Thanks & Questions

Project webpage: arc.encs.concordia.ca

Corresponding author: Azadeh Tabiban (a_tabiba@encs.concordia.ca)

44

