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Cloud Virtual Infrastructure

• Cloud computing has been 

widely adopted to provide 

users the ability to self-

provision resources while 

optimally sharing the 

underlying physical 

infrastructure
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Cloud Virtual Infrastructure

• The self-service and multi-tenancy nature of clouds also

leads to a higher complexity and greater chances of

misconfigurations

• Adversarial actors can launch their attack by exploiting

cloud misconfigurations

• This makes explaining systems behaviour difficult → The

way to find the root cause
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The Need for Root Cause Analysis

• The need for finding the root cause:

▪Forensic analysis

▪Debugging 

▪Prevention of recurrent failures

▪Recovery
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Limitation of Existing Solutions

• Problem localization solutions

▪E.g., using alert correlation [1]

▪Not providing root cause operations

• Cloud logs investigation

▪No intrinsic central view of changes in different services

▪ Log aggregation cannot explain the interdependencies 

between events

▪ Logs are not sufficiently expressive
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Limitation of Existing Solutions

• Existing provenance solutions

▪On Low-level system calls [2, 3] 

and not sufficient for clouds

oBig size of generated records

oTedious and error-prone analyses

oStorage and network overhead

▪ Impractical interception 

mechanisms in clouds

oRequiring system instrumentation
11
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Example Attack Scenario

• A data leakage alert is 

released

• Based on the logs, the 

cloud admin cannot 

explain the complex 

chain of events leading to 

the attack

▪ Interdependency

▪Expressiveness

IF2 Subnet2

PortA

Subnet1

PortB

Leakage to
VM_A VM_Mal

VM_B

Router1

PortMal

IF1

2019-05-18 19:42 INFO 

neutron.wsgi "POST /
v1.0/servers" 201Nova

Neutron

2019-05-18 19:30 INFO 

neutron.wsgi "PUT /v1.0/

routers/add-router-interface"

Neutron

2019-05-18 19:24 INFO 

neutron.wsgi "POST /
v1.0/routers"

Neutron

2019-05-18 19:50 INFO 

neutron.wsgi "POST /
v1.0/ports"

Neutron

2019-05-18 20:00 INFO 

neutron.wsgi "PUT /
v1.0/ports/p123"

2019-05-18 19:51 INFO 

neutron.wsgi  "POST /
v1.0/servers" 201Nova
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• What if we could find the interdependencies?

Example Attack Scenario

Neutron

2019-05-18 19:24 INFO 
neutron.wsgi [req-0607d 

ddacd bf6f8] "POST /
v1.0/routers"

Neutron

2019-05-18 19:30 INFO 
neutron.wsgi [req-0607d ddacd 

bf6f8] "PUT /v1.0/routers/

add-router-interface"

2019-05-18 19:42 INFO 
neutron.wsgi [req-9073k 

ddacd bf6f8] "POST /
v1.0/servers" 201

Nova

Neutron

2019-05-18 19:50 INFO 
neutron.wsgi [req-0607d 

ddacd bf6f8] "POST /
v1.0/ports"

2019-05-18 19:51 INFO 
neutron.wsgi [req-9073k 

ddacd bf6f8] "POST /
v1.0/servers" 201

Nova

Neutron

2019-05-18 20:00 INFO 
neutron.wsgi [req-0607d 

ddacd bf6f8] "PUT /
v1.0/ports/p123"

Router1

1: Create Router1

2: Attach Subnet1 
to Router1

Subnet1

IF1

3: Create VM_A 
in Subnet1

4: Create  PortMal 
on Router1

PortMal

PortA

Subnet1

5: Create VM_Mal 
attached to PortMal

PortMal

6: Update PortMal 
device-owner

PortMal
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DOMINOCATCHER

• The first provenance model at cloud management level

• A mechanism to capture the provenance metadata from 

different services in clouds and construct the provenance 

graph

▪A less invasive interception mechanism 

▪ Incremental construction

• Provenance-based forensic approach

▪User preference-based pruning

• Implementation based on OpenStack
14
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Cloud Management Provenance Model

• Defined based on a standard 
provenance specification [4] 
where:

▪Nodes: 

▪Entities: virtual resources

▪Activities: cloud management 
operations

▪Agents: cloud tenants or 
users Router1

Version: 1

Router1
Version: 0

PortMal
Version: 0

Create 
Port

TenantB
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Cloud Management Provenance Model

• Defined based on a standard 
provenance specification [4] 
where:

▪Edges: The provenance 
edges encode the 
dependencies between 
nodes. E.g., 

oUsed, WasGeneratedBy
(both pointing to the past in 
time)

Router1
Version: 1

Router1
Version: 0

PortMal
Version: 0

Create 
Port

TenantB

WasAssociatedWithUsed

WasGeneratedBy

WasGeneratedBy
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VM_Mal
Version: 0

Create 
VM

PortMal
Version: 2

Update Port
device_owner

Create 
Port

Update Port
device_owner

PortMal
Version: 1

PortMal
Version: 0

TenantB

Router1
Version: 1

Attach 
Subnet to 

Router

Router1
Version: 0

Create 
Router

TenantA

Subnet1
Version: 2

Create 
Port

PortA
Version: 0

Create 
VM

VM_A
Version: 0

WasGeneratedBy
Used

WasGeneratedBy

Used

WasGeneratedBy

Used

WasGeneratedBy

WasAssociatedWith

Used

WasGeneratedBy

Used

WasGeneratedBy

WasGeneratedBy

WasAssociatedWith

Used

WasGeneratedBy

Used

WasGeneratedBy

PortMal
Version: 3

WasGeneratedBy

Update Port
device_owner

PortMal
Version: 4

Used

WasGeneratedBy

Cloud Management Provenance Model

• VMA’s network is attached to TenantA’s router

• A TenantB’s user created a port on that router
▪So, that user could enter TenantA’s network

• The port was updated once a new VM was attached to it
▪So, that user could disable anti-spoofing rules to launch the

attack
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DOMINOCATCHER Methodology
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Provenance Construction

DOMINOCATCHER
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Provenance Construction – Data 
Collection

DOMINOCATCHER
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Responses 
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Cloud Management Requests

E.g., Create port 

in subnet SN123
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Provenance Construction – Data 
Collection

DOMINOCATCHER
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Updated/Created 
Resources

API Requests/ 
Responses 
Interceptor

Requested 
Operation Type

Cloud Management Requests

API Req./Res.

“POST /v2.0/ports .." …

Req. body: “… subnet_id: SN123 …”

Res. Body: “… id: P123 …”
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Provenance Construction – Data 
Collection
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Event name: “Create Port”

Updated/ Created resources: 

• Subnet: SN123

• Port: P123
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Provenance Construction – Graph 
Generation

DOMINOCATCHER

Cloud

Neutron

Nova

Glance

Runtime Provenance Construction Module

Requests Processor

Updated/Created 
Resources

API Requests/ 
Responses 
Interceptor

Requested 
Operation Type

Cloud Management Requests

API Req./Res.

Provenance 
Graph
Builder

Port
P123

Version:0

Subnet
SN123

Version:1

Create Port

WasGeneratedByWasGeneratedBy

Used

Subnet
SN123

Version:0

25



Provenance Construction – Graph 
Generation
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Forensic Analysis
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Forensic Analysis – Challenges

▪Large size of the 

provenance graph

▪Different tenants’ 

analysis requirements

Forensic analysis 

only on this tenant 

users’ behaviour

Forensic analysis on all 

tenants with whom there 

was a traffic exchange 28



Forensic Analysis – Pruning Schemes

1. Disjoint subgraph

2. Context-based
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Forensic Analysis – Pruning Schemes

1. Disjoint subgraph

• Discards the subgraphs to which there is no path from the 

target resource node
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Forensic Analysis – Pruning Schemes

1. Disjoint subgraph
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Forensic Analysis – Pruning Schemes

2. Context-base

• Traverses paths while checking the specified constraints 

to identify a subgraph of resources and operations 

interdependent with the victim virtual resource
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Forensic Analysis – Pruning Schemes

2. Context-base
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Forensic Analysis
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Implementation

• Implemented on OpenStack (Rocky)

• Neo4j as the graph database and Cypher language to 

query

• Deployed as WSGI middlewares on OpenStack services

▪Configuration changes are performed by these services →

Capturing all configuration changes through API calls

▪As an attached interface requires less customization →

Less invasiveness

• Py2neo library to translate python queries into Cypher
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Experiment Results

• Measured the ratio between the added latency and 

OpenStack management operations execution time in 

various cloud sizes

▪Total overhead remains under %4.17

Cloud Size # of Provenance 

Graph Nodes

Data 

Collection

Graph 

Generation

Total Overhead

600 VMs 43069 %.21 %1.89 %2.10

1800 VMs 64689 %.23 %3.32 %3.56

3000 VMs 107936 %.23 %3.94 %4.17
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Experiment Results

• Measured the ratio between the added latency and 

OpenStack management operations execution time in 

various cloud sizes

▪Total overhead remains under %4.17

39



Experiment Results

• For a provenance graph constructed with 120,000 

operations, only 80-megabyte storage is required

▪Higher than the number of configuration API calls issued 

in one day in a real enterprise cloud
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Concluding Remarks

• Defined a provenance model on cloud management level

• Provided an interception mechanism deployed in different 

cloud services

▪Less invasiveness

• Proposed a provenance-based forensic analysis 

approach for clouds

• Implemented and evaluated in OpenStack
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